

PHARMACOLOGICAL, BIOLOGICAL STUDY AND GC/MS ANALYSIS OF THE ESSENTIAL OIL OF THE AERIAL PARTS AND THE ALCOHOL SOLUBLE FRACTION OF THE N. HEXANE EXTRACT OF THE FLOWERS OF *REICHARDIA TINGITANA* L.

Taha El Alfy¹, Mona E El Tantawy², Amira Abdel Motaal¹, *Fatma El Zahraa Gamal² ¹Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt ²Department of Pharmacognosy and Tissue Culture, National Organization for Drug Control and Research, Cairo, Egypt

ABSTRACT

The essential oil of *Reichardia tingitana* L. of the aerial parts (stems and leaves) and flowers extract were obtained by hydrodistillation and extraction methods, respectively, then were analyzed by Gas Chromotography-Mass Spectrometry (GC / MS). Twenty-two components comprising 93.446% of the oil of the aerial parts and forty-five components comprising 98.056% of flowers extract were identified. The major components of aerial parts oil were cinnamaldehyde (29.78%), and undecane (12.99%). The flowers extract contained lanoleic acid ethyl ester (34.146%), hexadecanoic acid ethyl ester (20.6%) and linoleic acid methyl ester (8.05%) as the major components. Both oil and extract were examined for their anti-microbial activities against gram positive, gram negative bacteria and fungi. The results revealed the potent anti-microbial activity of the oil. Both oil and extract were studied for their cytotoxic activities against three different human cell lines. The oil showed potent cytotoxic activity against tumor cells.

Keywords: Reichardia tingitana L., Asteraceae, essential oils.

INTRODUCTION

Reichardia tingitana L. (family: Asteraceae) is a bitter annual herb (Galawein, Moraar) with branched stems from the base, cauline sessile leaves, and ligulate golden deciduous yellow flowers, which are purplish on lower surface (Tächolm, 1974). Reichardia tingitana L. grows wild in desert wadis, Mediterranean region, Southwest Asia, Tropical East Africa and Australia (Trease and Evans, 2002; Pengelly, 2003; Daniel, 2006; Bolus, 2002). The plant exhibited anti-inflammatory, anti-oxidant, antidiabetic, anti-feedant and insecticidal activity besides its ornamental value (Stalińska et al., 2005; The Local Food-Nutraceuticals Consortium, 2005; Daniewski et al., 1988). Reichardia tingitana L. contains a number of medicinally important constituents vis. Sesquiterpene lactones, flavonoids, volatile oils, sterols, triterpenoids and phenolic compounds (Daniewski et al., 1988; Mañez et al., 1994; El Masry et al., 1980). No literature was reported on the essential oil of aerial parts and flowers extract of Reichardia tingitana L. Thus it was interesting to study this essential oil and extract in the Egyptian plant.

MATERIALS AND METHODS

Plant material

Fresh flowers, stems and leaves of *Reichardia tingitana* L. were collected in March 2011 from North coast (Alexandria). They were identified by Dr. Abd El Halim Abd El Mogly Mohamed, Agricultural museum, Giza, Egypt.

Preparation of essential oil

The dry aerial parts (stems and leaves) 500 g were subjected to hydrodistillation method. The isolated essential oil was dried over anhydrous sodium sulphate and stored at 4° - $6^{\circ}C$ (Egyptian pharmacopoeia, 2005).

Preparation of the alcohol soluble fraction

The alcohol soluble fraction of n. hexane extract of the flowers was prepared by soaking about 500g of the freshly collected flowers in successive amounts of n. hexane, the solvent was evaporated under reduced pressure at a temperature not exceeding 40°C and the obtained concentrate was cooled in ice chest. The cooled concentrate was extracted by maceration in ice cold absolute ethanol to dissolve the extract and remove waxes. The alcoholic extract was filtered and the residue

^{*}Corresponding author e-mail: totyelzahraa@yahoo.com

was cooled again and extracted with ice cold absolute ethanol and so on. The process was repeated until the residue dissolved completely in cooled absolute ethanol.

Analysis of the essential oil and extract

The obtained essential oil and extract were divided into three portions.

First portion

Analysis of essential oil of aerial parts and the alcohol soluble fraction of n. hexane extract of the flowers were carried out on Agilent 6890 equipped with a mass spectrometric detector (MSD), model Agilent 5973, equipped with an HP-5MS column ($30m \times 0.25mm$, $0.25\mu m$); programming from $80^{\circ}C$ ($3 \min$) to $260^{\circ}C$ at $8^{\circ}C / \min$, 10 min. hold ; carrier gas, helium ; flow rate, 1.0 mL / min.; injection in split mode (60:1); injector and detector temperatures 225° and 300° , respectively . The EIMS mode at 70 eV; electron multiplier, 2500 V; ion source temperature, $250^{\circ}C$; mass spectral data were acquired in the scan mode in the m/z range 50-700.

The essential oil and the alcohol soluble fraction of the n. hexane extract components were identified by comparing their mass fragmentation patterns with that available (Adams. 2009: www.lipidlibrary.com, references www.massbank.com www.nist.com). and Also compounds identification was confirmed by electronic Wiley and NIST mass spectral database. The retention indices (RI) of the components were determined relative to the retention times of series of hydrocarbons. Results are tabulated (Tables 2,3).

Second portion

Both oil and extract were studied for their anti-microbial activities. The anti-microbial activity was tested using agar diffusion technique. 100 μ L of each essential oil were aseptically inoculated into wells, each of 1 cm diameter. The plates were incubated at 37°C for 24 hours in case of bacteria and at 25°C for 48 hours in case of fungi and results are tabulated (Table 5).

Third portion

The potential cytotoxicity of the essential oil of aerial parts and the alcohol soluble fraction of n.hexane extract of the flowers of *Reichardia tingitana* L .was tested using the method of (Skehan and Storeng, 1990) on three cell lines; liver, larynx and colon cancer human cell lines. Also IC₅₀ for each sample was reported and results are tabulated (Tables 6, 7, 8 and Figs.1-6).

RESULTS AND DISCUSSION

Table 1 shows the characteristics of the volatile oil of aerial parts in comparison to those of the alcohol soluble fraction of the n. hexane extract of the flowers.

GC / MS of the essential oil and extract

From the GC / MS of the essential oil of aerial parts (Table 2), 22 components were identified representing 93.446% of the oil yield. Major components were Cinnamaldehyde with percentage of 29.779% of the oil yield, Carvotanacetone whose percentage is 5.517% of the oil yield, Undecane representing 12.993% of the total oil vield. The hydrocarbons represented 41.538% of the oil, the main of which is Undecane constituting 12.993% of the oil. The aldehydes represented 30.640%, the main of which is Cinnamaldehyde whose percentage is 29.779% of the oil yield. Ketones represented 9.137% of the oil; the main is Carvotanacetone whose percentage is 5.517% of the oil yield. The alcohols represented 11.275%, the main of which is 2-isopropenyl-5-methyl cyclohexanol with percentage of 7.85 of the total oil. The only oxide is Myroxide representing 2.99% of the oil vield.

From the GC / MS of the alcohol soluble fraction of n. hexane extract of flowers (Table 3), 45 components were identified representing 98.056% of the extract yield. Major components were lanoleic acid ethyl ester with percentage of 34.146% of the extract yield, hexadecanoic acid ethyl ester whose percentage is 20.6% of the extract yield, linoleic acid methyl ester representing 8.05% of the

Table 1. Physical properties of the essential oil of aerial parts and alcohol soluble fraction of the n. hexane extract of flowers of *Reichardia tingitana* L.

Oil Physical properties	Essential oil of aerial parts	Alcohol sol.fraction of n.hexane extract of flowers
Yield % (w/w)	2	1
Colour	Yellowish green	Yellow
Odour	Aromatic	Aromatic
Refractive index	1.3975	1.3866
Specific gravity	0.57	0.75
Miscibility	Completely miscible with petroleum	Completely miscible with petroleum
	ether, hexane, benzene, chloroform and	ether, hexane, benzene, chloroform and
	ether.	ether.

total extract yield. Esters representing 86.084% of the extract, the main of which was lanoleic acid ethyl ester with percentage of 34.146% of the extract yield. Acids

represented 3.414% of the extract, the main of which was 9-octadecenoic acid representing 1.44% of the extract.

Dool	Dt		Mass Spect	ral Data		Kovata	Dorcontag
No	Kl.	M^+	Base	Other Peaks	Compound	index	reicentag
INO.	(IIIII)		Peak			muex	C 70
1	3.78	112	57	69, 43, 97	Methyl Cycloheptane	860	0.278
2	4.51	112	55	113, 111, 93	1-Heptene-3-one	953	3.62
3	5.23	142	57	71, 85, 97	Decane	1000	7.23
4	5.44	126	55	69, 81, 97	1-isobutyl 3-methyl	-	0.42
					cyclopentane		
5	5.85	118	57	55, 69, 83	3-methyl 1,5-pentane diol	1060	0.41
6	6.61	144	57	55, 69, 83	n-octane-1ol	1068	0.58
7	7.22	154	55	71, 81, 95	3-methyl-3-undecene	1017	0.57
8	8.16	136	121	93, 79, 67	α-terpinene	1017	0.57
9	8.76	156	57	85, 71, 113, 127	Undecane	1100	12.99
10	9.45	154	55	69, 83, 111, 93	2-isopropenyl-5-methyl	1104	7.85
					cyclohexanol		
11	9.85	154	55	71, 57	Myroxide	1145	2.99
12	10.08	126	57	71, 85, 112	3-nonene	1189	4.01
13	10.84	170	57	71, 81, 95	Dodecane	1200	5.22
14	11.39	152	82	93, 108, 121	Carvotan acetone	1247	5.517
15	12.33	132	131	103, 77, 51	Cinnamaldehyde	1270	29.78
16	13.03	182	55	69, 83, 97	1-tridecene	1291	2.25
17	13.50	168	55	67, 69, 81, 83	Undec(9E)en-1-al	1312	0.86
18	14.12	206	79	133, 105, 91	1,3,11(13) Elematrien-12-ol	-	0.29
19	15.68	-	57	191	Non identified	-	0.04
20	16.43	208	77	193, 118, 105	2-hydroxy phenoxy 1-	-	0.79
					phenyl ethyl		
21	19.54	220	79	55, 57, 93	β-Acoradienol	1763	2.145
22	24.435	252	55	155, 93	$\Delta 5$ -octadecene	1775	5.01
23	25.50	242	57	185,29	Bis 6-methyl heptyl	-	0.066
					hexanoate		

Table 2. GC /	MS analysis of the e	ssential oil of aerial part	ts of <i>Reichardia tingitana</i> L.
14010 - 007	1120 41141 5010 01 1110 0	ssential on or aerial part	

Table 3. GC/MS analysis of the alcohol soluble fraction of the n.hexane extract of the flowers of Reichardia tingitana L.

Dook	Dt		Mass S	Spectral Data		Kovats	
No	(min)	\mathbf{M}^+	Base	Major Peaks	Compound	index	Percentage%
110.	(IIIII)		Peak			maex	
1	8.20	158	59	136, 121, 93	Beta Fenchol	1116	0.28
2	8.58	150	71	138, 123, 95, 81	Menthol	1171	0.493
3	8.72	148	148	121, 91, 71	Estragole	1196	0.429
4	9.57	152	82	108, 91	Carvotanacetone	1247	1.106
5	10.15	132	131	103, 77, 51	Cinnamaldehyde	1270	0.611
6	10.32	148	148	133, 117, 105, 77	Anethole	1284	1.272
7	12.03	200	55	155, 101, 88	Decanoic acid ethyl ester	1395	0.121
8	12.485	204	91	133, 93, 79, 69	Caryophylline-9-epi E	1466	0.205
9	12.84	-	98	155, 144, 101	Unidentified	-	0.161
10	13.85	214	74	87, 55	Dodecanoic acid metyl ester	1510	0.194
					(Azelaic acid)		

Continued...

Table 3 continue....

	_	Mass Spectral Data		Spectral Data			
Peak	Rt.	M^+	Base	Major Peaks	Compound	Kovats	Percentage%
No.	(m1n)		Peak	. j	1	index	ε
11	14.03	204	159	131, 119, 91	Cis calamenene	1529	0.148
12	14.915	216	152	199, 105, 111, 83	Dimethyl azelate	1548	0.194
13	15.06	200	73	157, 129, 60	Dodecanoic acid (Lauric acid)	1566	0.378
14	15.47	224	55	69, 83, 97, 111	Δ-Hexadecene	1593	0.242
15	16.42	244	199	157, 111, 55	Diethyl azelate	-	0.378
16	16.52	238	81	95, 123, 93	3,3-dimethyl 1,4-pentadecadiene	-	0.188
17	16.62	228	88	101, 183, 73	Dodecanoic acid ethyl ester (ethyl	1595	1.223
				, ,	laurate)		
18	16.816	212	97	88,55, 138, 167	8-Nonenoic acid ethyl ester	-	0.173
19	17.590	228	73	60, 101, 129	Myristic acid (Tetradecanoic acid)	1720	0.387
20	17.736	242	74	87, 55, 143	Methyl tetradecanoate (methyl	1723	0.301
					myristate)		
21	18.14	270	74	87, 129, 143	Pentadecanoic acid methyl ester	1820	0.155
22	18.46	184	101	73, 55	4,5-dimethyl 2-cyclohexyl 1,3-	-	0.218
					dioxolane		
23	18.87	270	70	55, 239	Isoamyldecanoate	1845	0.552
24	19.01	256	88	101, 157, 213	Tetradecanoic acid ethyl ester	1885	1.172
					(ethyl myristate)		
25	19.16	282	55	69, 83, 97	9-Hexadecenoic acid methyl ester	1896	0.423
26	19.45	270	88	55, 71, 101	13-methyl tetradecanoic acid	-	0.405
	10.64	200		<pre> 60 00 00 111</pre>	ethyl ester	1015	4.4.64
27	19.64	300	55	69, 83, 97, 111	11-Hexadecenoic acid ethyl ester	1915	1.161
28	20.34	270	74	55, 87	Hexadecanoic acid methyl ester	1921	5.467
29	20.342	160	117	88, 71, 55	3-hydroxy hexanoic acid ethyl ester	-	0.157
30	20.5	272	55	227, 83, 97, 111	2-hydroxyhexadecanoic acid	1960	0.535
31	20.89	282	55	69, 83, 97	9-Hexadecenoic acid ethyl ester	1977	2.022
32	21.23	284	88	157, 73, 55	9 -Hexadecanoic acid ethyl ester	1993	20.6
33	21.23	294	67	55, 81, 95, 109	9,12-octadecadienoic acid methyl	2085	8.05
- 24	01.405	202	70	67 55 05 105	ester	2000	5 105
34	21.485	292	79	67, 55, 95, 105	9,12,15-octadecatrienoic acid	2098	5.127
25	01.57	202	70	(0.55.02	Method 2 11 14 actor de actricar actor	2009	0.792
35	21.57	292	79	69, 55, 93	Methyl 3,11,14-octadecatrienoate	2098	0.782
27	21.731	298	74	55, 67, 145	Ethyl 0.12.15 estadesetrieneste	2123	0.322
20	22.317	300		69, 79, 95	Ethyl 9,12,15-octadecalifenoate	2139	0.975
38	22.539	308	55	07, 81, 95	Ethyl Inoleate (9,12-	2141	54.140
30	22 182	202	55	60 83 07 111	0 octadecanelloic acid etityl estel)	2161	1.44
40	23.162	292	55	55 82 110 262	9-octadecenoic acid	2101	0.674
40	23.495	280	07	55, 85, 110, 205	acid(linoleic acid)	2175	0.074
41	23 671		73		Linidentified		0.782
42	24.514	312	88	55 101 157	Ethyl octadecanoate	2196	3 286
42	24.314	324	57	71 85	Tricosane	2300	0.510
44	25.00	327	55	67 81 151	9 12 Nonadecadienoic acid ethyl	-	0.234
	23.00	344	55	07,01,151	ester	-	0.234
45	25.12	166	81	55, 95, 125, 151	1.6-dimethyl	_	0.367
		100	U 1	50, 70, 120, 101	decahydronaphthalene		0.207
46	25.39	322	55	73, 85, 263	Propyl 9.12-octadecadienoate	-	0.378
47	25.57	166	151	95, 123, 138	1,1-dimethyl	-	0.367
				, _,	decahydronaphthalene		

Components	Yield (%) in the essential oil of aerial parts	Yield (%) in the extract of flowers
Total hydrocarbons	41.538	2.036
Monoterpenes	0.570	-
Alcohols	11.275	0.773
Phenols	0.79	1.701
Aldehydes	30.640	0.611
Ketones	9.137	1.494
Esters	0.066	87.809
Acids	-	3.414
Oxygen containing compounds	-	0.218
Total identified components	93.446	98.056
Unidentified components	0.04	0.943

Table 4. The calculated percentages of different classes of compounds of *Reichardia tingitana* L. volatile oil of aerial parts and extract of flowers.

Table 5. Anti-microbial activities of essential oil of aerial parts and alcohol soluble fraction of n.hexane extract of flowers of *Reichardia tingitana* L.

Test Organism	Gram negative		Gram positive bacteria		Fungi		
	b	acteria					
	E. Coli	Pseudomonas	Staphylococcus	Bacillus	Candida	Saccharomyces	Aspergillus
Oil		aerugiosa	aureus	Subtillus	albicans	cerevisiae	niger
Essential oil of	30	22	25	20	20	20	_
aerial parts							
(100µL)							
Alc.sol.fraction	_	_	_	-	_	_	_
of flowers							
(100µL)							
Chloramphenicol	21	20	22	20	_	_	_
(100µL of							
5mg)ml solution							
Griseofulvin	_	_	_	-	20	20	20
(100µL of							
5mg)ml solution							

Table 6. Cytotoxic activity of alcohol soluble fraction of n.hexane extract of flowers of Reichardia tingitana L.

Conc.of extract (µg)	Tumor cells surviving fraction					
	Liver carcinoma cell line	Larynx carcinoma cell line	Colon carcinoma cell line			
0.0	1.000	1.000	1.000			
5.0	0.9215	0.995	0.850			
12.5	0.8352	0.686	0.396			
25.0	0.411	0.338	0.372			
50.0	0.346	0.355	0.198			

Table 7. Cytotoxic activity of essential oil of aerial parts of Reichardia tingitana L.

Come of oil (ug)	Tumor cells surviving fraction					
Conc.or on (µg)	Liver carcinoma cell line	Larynx carcinoma cell line	Colon carcinoma cell line			
0.0	1.000	1.000	1.000			
5.0	0.599	0.780	0.708			
12.5	0.576	0.344	0.434			
25.0	0.134	0.288	0.234			
50.0	0.139	0.243	0.166			

Sample	Tumor cells(IC_{50}^{*})				
	Liver carcinoma cell line	Larynx carcinoma cell line	Colon carcinoma cell line		
Extract of flowers	1.000	1.000	1.000		
Essential oil of aerial parts	0.9215	0.995	0.850		

Table 8. IC_{50}^{*} of the essential oil and the alcohol soluble fraction of n.hexane extract of *Reichardia tingitana* L.

 $IC_{50}^{*:}$ the dose of the sample which reduces survival to 50 %.

Fig. 1. Cytotoxic activity of alcohol soluble fraction of flowers of Reichardia tingitana L. on liver carcinoma.

Fig. 2. Cytotoxic activity of alcohol soluble fraction of flowers of Reichardia tingitana L. on Larynx_carcinoma.

The hydrocarbons represented 2.036% of the extract. Alcohols represented 0.773% of the extract. The only sesquiterpene is Caryophylline 9 epi representing 0.205% of the extract yield. The only aldehyde was Cinnamaldehyde constituting 0.611% of the extract yield.

From table 4, it is observed that the yield of total hydrocarbons in the essential oil of aerial parts (41.538%) is higher than that of the flower extract. The percentage of alcohols (11.275%), aldehydes (30.640%) and ketones (9.137%) are vigorously higher than that of flower extract. On the other hand the total esters in the flower

extract represent (87.809%), while the only ester found in the oil of aerial parts represents (0.066%). Acids representing (3.414%) of the flower extract, are not detected in essential oil of aerial parts.

As shown in table 5, only the essential oil of aerial parts of *Reichardia tingitana* L. exhibits anti-microbial activity, while the extract of the flowers showed no antimicrobial activity. The anti-bacterial activity of essential oil of aerial parts were higher than Chloramphenicol activity used as a reference standard except with *Bacillus subtillus*, they exerted the same effect.

Fig. 3. Cytotoxic activity of alcohol soluble fraction of flowers of Reichardia tingitana L. on colon carcinoma.

Fig. 4. Cytotoxic activity of aerial parts of Reichardia tingitana L. on Liver carcinoma.

Fig. 5. Cytotoxic activity of aerial parts of Reichardia tingitana L. on Larynx carcinoma.

The anti-fungal activity of the essential oil of aerial parts of *Reichardia tingitana* L. was similar to Griseofulvin activity used as reference standard with Candida albicans and Saccharomyces cerevisiae. The essential oil of aerial parts of *Reichardia tingitana* L. showed NO effect against Aspergillus niger. The high potency of the aerial parts essential oil may be due to the content of aldehydes specially (cinnamaldehyde), alcohols and ketones which contribute more than (50%).

Fig. 6. Cytotoxic activity of aerial parts of *Reichardia tingitana* L. on Colon carcinoma. IC_{50}^* : Inhibition concentration that stops (inhibits) growth of 50 % of cells.

Cinnamaldehyde has an anti-microbial activity against gram positive, gram negative bacteria and fungi (Ooi *et al.*, 2006; Satya *et al.*, 2012).

From the previous figures 1-6 and tables 6,7,8, it is obvious that the essential oil of aerial parts shows more potent cytotoxic activities on larynx and colon carcinoma rather than liver carcinoma. On the other hand, alcohol soluble fraction of flowers showed less cytotoxic activities on liver and larynx carcinoma. Both essential oil of aerial parts and alcohol soluble fraction of flowers showed similar cytotoxic activity on colon carcinoma cell lines. Thus it's observed that the essential oil of the aerial parts showed a potent cytotoxic activity against tumor cells. Cinnamaldehyde impairs melanoma cell proliferation, invasiveness and tumor growth (Cabello et al., 2009).

CONCLUSION

This is the first report to study the constituents of the essential oil of aerial parts and extract of flowers of *Reichardia tingitana* L. growing in Egypt. The potent anti-microbial, anti-fungal and cytotoxic activities of the essential oil of aerial parts should be taken in consideration i.e. it can be used in pharmaceutical formulations after biological and clinical studies.

ACKNOWLEDGMENTS

The authors are grateful to Prof. Dr. Amany Moustafa Eissa, Head of Microbiology Department, Faculty of Medicine, Ain Shams University, Chemist. Eiman Samir, Microbiology Department in NODCAR and National Cancer Institute.

REFERENCES

Adams, RP. 2009. Identification of essential oils components by Gas Chromatography/Mass Spectroscopy. Allured publishing corporation, Carol stream, Illinois, USA.

Arab Republic of Egypt. Ministry of Health and Population. 2005. Egyptian Pharmacopeia.

Cabello, CM., Warner, B., Sara, D., Lamore, SL., Alexandra, S., Bause, SA. and Georg, TW. 2009. The cinnamon- derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radical Biol. Med. 46(2):220-231.

Daniewski, WM., Skibicki, P., Gumuka, M., Drozdz, B., Grabarczyk, H. and Boszyk, E. 1988. Sesquiterpene lactones constituents of Reichardia tingitana L. Roth and their anti-feedant activity. Acta. Soc. Bot. Pol. 57(4):539-545.

Daniel, M. 2006. Medicinal plants (Chemistry and Properties). Science Publishers, USA. 57-59, 80, 83, 84, 155-159.

El Masry, S., Saleh, MR., Ghazy, NM. and Vuilhorgne, M. 1980. Isolation and structure elucidation of sesqueterpine lactones from Reichardia tingitana L. Roth var. orientalis (L) Asch. Et Schweinf. Acta. Pharmcol. Sin. 17(3):137-142.

Lotfy Bolus. 2002. Flora of Egypt. Al Hadara Publishing, Cairo, Egypt. 5(3):296-299,352.

Mañez, S., Recio, MC., Giner, RM., Sanz, MJ., Terencio, MC., Peris, JB., Stubing, G. and Rios, JL. 1994. A chematoxonomic review of the subtribe crepidinae based on its phenolic constituents. Biochem. Syst. Ecol. 22(3):297-305.

Ooi, LS., Li, Y., Kam, SL., Wang, H., Wong, EY. and Ooi, VE. 2006. Antimicrobial activities of cinnamon oil

and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med. 34(3):511-22. Pengelly, A. 2003. The constituents of medicinal plants. CABI. Publishing. (2nd edi.). 34-37:88-89.

Skehan, P. and Storeng, R. 1990. New Colorimetric Cytotoxicity Assay for Anticancer-Drug screening. J. Natl. Cancer Inst. 82:1107-1112.

Sree Satya, N., Surya, PDV. and Meena, V. 2012. Antimicrobial activity of Cinnamaldehyde from Methanolic extracts of Cinnamon on Klebsiella pneumonia and Candida albicans. Research in Pharmacy. 2(6):32-35.

Stalińska, K., Guzdek, A., Rokicki, M. and Koj, A. 2005. Transcription factors as targets of the anti-inflammatory treatment. A cell culture study with extracts from some Mediterranean diet plants. Korean J. Physiol. Pharmacol. Korean. 56 (Suppl.) 1:157-69.

The Local Food-Nutraceuticals Consortium. 2005. Understanding local Mediterranean diets: A multidisciplinary pharmacological and ethnobotanical approach. Pharmacol. Res. 52(4):353-366.

Trease and Evans. 2002. Pharmacognosy. El Sevier Science. 762-768.

Tächolm, V. 1974. Students' Flora of Egypt. Cairo. (2nd edi.). Cairo University Press.

www.lipidlibrary.aocs.org

www.massbank.jp

www.nist.org

Received: Nov 21, 2014; Accepted: Dec 26, 2014